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SUMMARY 
A flux limiter based on characteristic variables is extended by a control volume flux formulation to 
approximate the convection term at the cell interface for an essentially third-order-accurate scheme. The 
basic algorithm uses implicit MUSCL-type flux splitting and the approximate factorization method. It is 
applied to three test problems: (i) a one-dimensional shock tube problem; (ii) a two-dimensional problem of 
an oblique shock step with Mach numbers 3 and 10 and a shock angle of 59"; (iii) a two-dimensional problem 
of transonic inviscid flow past an NACA0012 aerofoil with Mach number D8 at zero angle of attack. The 
computational results by the new flux limiter function are compared with the results of direct applications of 
the SMART algorithm, Leonard's SHARP algorithm, the third-order Van Leer flux-splitting method with a 
smooth limiter, Harten's second-order unwind-biased TVD scheme, Chakravarthy's third-order MUSCL- 
type TVD scheme and the exact solution. The comparison shows that the present method gives the most 
accurate and least oscillatory results with a rapid rate of convergence. 
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INTRODUCTION 

For accurate high-order simulations of fluid flows with strong shocks, careful treatment of flow 
discontinuity is of great importance to avoid oscillatory solutions while achieving rapid 
convergence. Such investigations have been done with modern shock-capturing schemes, e.g. 
TVD, E N 0  and flux splitting. Total-variation-diminishing (TVD) schemes modify the numerical 
flux at the interface of a computational cell by use of various limiters to control the amount of 
antidiffusive flux.'-6 The limiter is designed so that a conventional non-TVD scheme can be 
modified to satisfy the TVD conditions.' E N 0  schemes*-'O use a piecewise polynomial as the 
interpolation technique, which helps to construct an essentially non-oscillatory solution from the 
cell average. For Steger-Warming splitting' ' the switching function, which is called a limiter, 
serves to limit the second-order term in the spatial differencing of the split flux, and the evaluation 
of the flux values at cell interfaces is crucial to the convergence rate and accuracy of the results. 
Anderson et al." employed the MUSCL (monotone upstream central scheme for conservation 
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laws) approach instead of the standard flux difference of the Steger-Warming splitting method to 
evaluate the split flux at the interfaces and extended the model to a third-order upwind-biased 
model by a smooth limiter. The above-mentioned methods indicate that the estimation of the flux 
at interfaces is of common interest and important to the problems. In the meanwhile, the concept 
of control volume flux formulation in approximating the interface values is commonly used for 
convectiondiffusion problems, e.g. the well-known TEACH code,13 SMART14 and the SHARP 
and QUICK algorithms of L e ~ n a r d . ' ~ . ' ~  The present study effectively combines the concepts of 
flux limiter and control Golume to form a new method. 

The present study proposes an upwind-biased MUSCL-type scheme of Van Leer splitting with 
a new smooth limiter. The limiter is based on characteristic variables and is extended from the 
concept of control volume flux formulation of the SMART and SHARP algorithms, which deal 
only with the convection-diffusion equation of a single variable. This paper applies the concept to 
a system of variables and three problems are tested: (i) a one-dimensional shock tube problem; 
(ii) a two-dimensional problem of an oblique shock step with Mach numbers 3 and 10 and a shock 
angle of 59"; (iii) a two-dimensional problem of transonic inviscid flow past an NACA0012 
aerofoil with Mach number 0-8 at zero angle of attack. The present method shows improvements 
in accuracy and convergence characteristics of the results when compared to other schemes such 
as modified SHARP, SMART and the Van Leer flux-splitting method. 

MATHEMATICAL AND NUMERICAL MODELS 

Governing equations 

The governing equations are the time-dependent two-dimensional equations of ideal gas 
dynamics, i.e. the Euler equations. The inviscid conservation-law equations in Cartesian co- 
ordinates can be expressed in conservation form as follows: 

where Q, F(Q)  and G(Q)  are the conserved variables and the convective fluxes. The conservation- 
law form of equation (1) can be maintained under the co-ordinate transformation 

and is expressed as 

a0 a$ a6 -+-+-= 0, 
at a t  aq 

where 

(3) 

The equations are non-dimensionalized in terms of the reference density pa and speed of 
sound am. The velocity components are u and u in the x- and y-directions respectively. The 
pressure p is related to the conserved variable Q through the equation of state given by 
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where y is the ratio of specific heats, taken as y = 1.4. The Jacobian of the transformation is denoted 
by J and can be expressed as J = C[,qY- tyqx. The velocities in (5, q) co-ordinates are 

u = r,u + rye, 
v=q,u+qyv, 

which represent the contravariant velocity components. 

Flux splitting 

The technique of flux vector splitting used in the present work was developed by Anderson 
et a l l 2  and the flux is continuously differentiable even across eigenvalue sign changes, thus leading 
to smoother solutions at sonic and stagnation points. The two-dimensional Van Leer splitting flux 
can be formulated in general spatial co-ordinates g and q, but only the splitting for the flux 8 in the 
<-direction is given below since the others can be obtained similarly. The split flux @* is given in 
terms of the local contravariant Mach number M,, where M, = U/a and U = U/lgrad(()l. 

For supersonic flow 

?=F and @ - = O  i f M , > l  
(7) 

where 
fASS = * pa(M, f 112/4, (9) 

(10) energy =Cs { c - (7 - 1) U2 * 2(y - 1)Ua + 2a2 lMr2 - 1) + (u2 + u2 1/21. 
k;, and 
defined as 

are the direction cosines of the interface in the <- and q-directions respectively and are 

k= t,/lVC[l, iy= <,/lVtI. (1 1) 

Spatial diferencing 

and 6* in the general form 
In the presem flux-splitting method the spatial derivatives of fluxes i a n d  6 can be split into @* 

6<FI=6;F+ +s,.F-, 6,&6;G++6;6-, (12) 
where 6' and 6 -  denote general forward and backward difference operators. In this approach the 
convective fluxes are evaluated at cell interfaces while the dependent variables are evaluated at the 
centroids. The split flux differences are implemented as a flux balance across a cell corresponding 
to MUSCL-type spatial differencing.I2 The spatial differencing of flux F^ in the C[-direction can be 
defined a d 3  

- 1 -  - 
6,F =--Cf"' (QG 1 / 2  9 ki+ 1/2) -F+ (Qi- 112 9 ki- 112) + g- (Qi'+ 1 / 2 ,  Ri+ 1/2) -F-  (Qt- 1/29 &- 1/2)1, A t  

(13) 
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where f' (Qr,fE) denotes the split flux f* and is evaluated by using the state variable Q' at the cell 
interface ( i +  1/2) and the normal direction cosine vector k ( R r k , i + k , j ) .  Q,; 1,2 denotes the 
upwind-biased interpolation value at the interface of a computational cell. Q:+ 112 is evaluated by 
Q i + 2 ,  Q i + l  and Qi (forward-biased) and Q,+1,2 is evaluated by Q i - l ,  Qi and Q i + l  (backward- 
biased). 

These interfacial values can be determined by the flux limiter, which is an important issue of the 
present work and will be discussed in the next sub-section. 

--. - +  

Flux limiters and normalized variable diagram 

For the MUSCL-type flux-splitting method the spatial differencing of the split flux can be first-, 
second- or even third-order-accurate if the interfacial values of Q&llz are evaluated by a first-, 
second- or third-order interpolative method. If the interpolative function is not monotonic, an 
unreasonable value at the cell interface is obtained and the computational results exhibit 
oscillation (overshoot or undershoot) when discontinuity of the flow field is encountered. The use 
of switching functions (i.e. limiters) is an approach employed in Van Leer's flux-splitting method 
for this purpose. For simplicity, the subscripts of the dependent variables will be represented by 
the labels f, U, C and D from now on. These labels, defined in Reference 15, denote the nodal values 
downstream (D), central (C) and upstream (U) and the face value (f). The sense of 'upstream' or 
'downstream' depends on the direction of the characteristic speed of the wave. For the backward- 
biased case Qf is Q;+112 and (Qu, Qc, QD) are (Qi- Qi, Qi+ l). For the forward-biased case Q, is 
Q:+1,2 and (Q,, Qc, Q,) are ( Q i + 2 ,  Q i+  1, Qi). Then the limiter can correlate the value of Q at the 
cell interface (f) and nodal points (U, C or D). For example, a general form of first/second-order 
upwind-weighted interpolation formula can be given as 

Qf = Qc + MQc - Q u P  (14) 

The first- and second-order approximations correspond to 4f = 0 and 4f = 1 respectively, i.e. flux 
limiting is implemented through a spatial variation of &. 

The present work attempts to develop a flux limiter extended from the idea of Leonard, such as 
QUICK,16 SHARP" or SMART.I4 These schemes are designed for convective modelling of 
discontinuities and applied to single-variable problems. A normalized variable diagram (NVD) is 
used to illustrate the relationship between the normalized convected control volume face variable 
and the normalized adjacent upstream node variable in these schemes. In the NVD plots, first- and 
second-order upwinding, second-order central differencing, QUICK, SHARP and SMART are all 
represented by different curves, Both accuracy and monotonicity are clearly shown by these 
functional relationships. The use of the NVD to express the flux limiter function is a new 
illustration of the flux limiter concept which gives an alternative physical essence. In order to 
equate the flux limiter of MUSCL-type flux-splitting methods and the NVD concept, all variables 
are unified in normalized form and the definition of the normalized variable is given as 

Q=-. - Q-QU 

QD-QU 
(15) 

Note that OD= 1 and 0, =O. Then the functional relation between the normalized convected face 
value of and the normalized adjacent upstream node value & can be obtained by the flux limiter 
function of equation (14) and the normalization of the dependent variables. The functional 
relations of the first-order upwind scheme,' the second-oeder upwind ~cherne, '~ the second-order 
CUI scheme," QUICK,16 SMART,14 SHARP' and the third-order upwind-biased scheme of 
Van Leer'' are given in Table I. These functions are plotted in Figure 1. 
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Table I. Functional relations between normalized interface value and adjacent node values for different 
schemes 

Scheme Functional relations (Qf versus &) 

First-order upwind' or = QC 

Second-order CUP8 Of =iQcc+3 
Third-order QUJCKl6 or =iQc+% 

Third-order SMART14 Or=& i f Q c m  11 

Or = 3&. if &E [O, i] 
Qf = 1 if & E  [$, 13 
Qf=tQc++ if &cE[&, 21 

Second-order upwind" of = 1 5 &  

High-order SHARP15 

Third-order 
Van Leer limiter12 

~ f = ~ & + ~  
&=$& if&e[-l, 01 
of=& if & ~ [ 1 ,  1.51 

if &[0.35, 0.651 or &c~[-l ,  1.51 

or = &+!( 4 1 +;(I - * a ) )  

Q f  

Figure 1. Normalized variable diagram 
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It is seen that the expressions of ‘normalized limiters’ in the SHARP and SMART algorithms 
consist of four or five piecewise functions and the computation of the intrinsic function SQRT is 
not economic. Moreover, these normalized limiters are not continuously differentiable, so that a 
problem of convergence is encountered when these limiter functions are used for a large time step. 

The present work assumes that the normalized variable at the cell interface, Gf, can be related 
to the normalized variable at the centroid, Oc, as a fourth-order polynomial for 0 < (2, < 1 and two 
simple rational fraction functions with respect to Qc GO and &> 1. These functions are linked at 
points (0,O) and (1 , 1) with the same values of the first derivative. Thus the integrated expression of 
these functions is continuously differentiable. In order to assume the boundedness of the solution 
and the essential third order of accuracy, the polynomial follows the outline of a SMART 
algorithm and consists of the following features. 

(i) A monotonic curve passes (0, 0), (0.5,0.75) and (1 , l )  with slopes So, at &=O and 075 at 
(2,=0.5. The specified slope of 0-75 at &=03 is desired so that the scheme is essentially 
third-order-accurate. 

(ii) The curve approaches the first-order upwind scheme if (2, is greater than unity or less than 
zero. 

(iii) Convective stability and the convection boundedness criterion of Leonard must be 
satisfied. 

The curves are described as follows: 

Gc [Qc- SOOSl I/(& -B1) for &GO, 
Of = (10 -4SoO) & + @So0 - 19) @ + (10 - 5SoO) @+ Soo& for 0 < 0, < 1, 

1 + @c- 1) [QC - 1 + (3 - so01 B1 I/(& - 1 + B1) for &>I. 
(16) 1 

where /I1 is a small value, chosen to be 0.05 in the present method. Accurate estimation of the 
interface value is of crucial importance where shock is encountered. Attention must be given to the 
selection of the limiter function of Of near (0,O) and (1,l) .  An empirical formula for Soo is proposed: 

Soo = max [2-7 - 1 /(ML + l), 2-01 

This formula can reduce the value of Soo to 2.0 when the transonic flow field calculation is applied 
and quickly recover to 2-7 for increasing the resolution of strong shock for supersonic problems. 

Characteristic-based variable 

The use of the characteristic variable to evaluate the cell interface variable for the MUSCL 
procedure was first developed by Mulder and Van Leer.” They developed an implicit flux-vector- 
splitting procedure to solve the one-dimensional Euler equation which gives a different form of 
momentum equation. Three types of variable (conservative, approximately characteristic, true 
Characteristic) to interpolate the cell interface value were applied for the averaging-limiting 
procedure for a single convection equation. Convergence was significantly improved with the true 
characteristic variable. The choice of characteristic variable for the flux limiter of this paper is 
extended from the local characteristic variable,20 and the use of this characteristic variable in the 
MUSCL-type TVD scheme has been employed by Chakravarthy and Ota21 to achieve high 
accuracy. 

In Van Leer’s original work,12 conservative variables are the dependent variables as the flux 
limiter functions in all schemes. i.e. the interface values of the dependent variables are calculated 
by equation (14) and the flux limiter is a function of conservative variables of Q at the node points. 
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As a matter of fact, the adoption of primitive variables (i.e. p, u, v, p )  instead of conservative 
variables as the dependent variables is an alternative method of using the flux limiter concept 
which might have been done in some computer programmes without discussion by the authors 
concerned. In this paper a new flux limiter is designed as a function of the characteristic variables 
of W at the node points. W is defined as follows: 

where are model matrices whose columns are eigenvectors of the Jacobian matrices & 
(= af/aQC). The model matrices are evaluated by the state variable Qc and the direction cosine at 
the point C. In the present method the characteristic variables at the normalized cell interface, qr, 
are first evaluated by the flux limiter functions (equation (16)) and related to the adjacent nodal 
value Pc (i.e. all 0 in equation (16) are substituted by m. Furthermore, 

wr=Pf (wD-  W,)+ w,. (18) 

Then the variables of Qf can be obtained by multiplication of kc (the inverse of I?;') and W,, i.e. 

Qr = Rc Wf. 

Applications of the flux limiter based on characteristic variables W, conservative variables Q 
and primitive variables are compared in the present study. The next section shows that the 
characteristic-variable-based flux limiter leads to fast convergence and non-oscillatory solutions. 

Implicit algorithm 

The implicit algorithm is basically a backward Euler time integration scheme which uses 
approximate factorization in delta form as suggested by Beam and Warming,22 i.e. equation (3) 
becomes 

= -At(S;P+ +S; 8- +S, G1++S: G 1 - ) y , j .  (20) 
The spatial derivatives are approximated by MUSCL-type differencing with the newly designed 

limiter, and the flux Jacobian matrices aP'/aQ, af-/aQ, ae'/dQ and a6-/aQ are evaluated at 
the cell interface variable Q & First-order upwind differencing is used on the left-hand side of 
equation (17) to yield a block-tridiagonal structure for the implicit equations; then the standard 
algorithm for solving this type of matrix equation can be used conveniently. 

RESULTS AND DISUSSION 

Three test problems were performed in order to verify the effectiveness of the flux limiters. The flux 
limiter proposed in the present study has several special features: (i) it is characteristic-based; 
(ii) it is essentially third-order-accurate, continuously differentiable; (iii) it is developed from the 
concept of NVD by Leonard. 

The first test problem is a one-dimensional shock tube problem. For this problem the results 
computed by flux-splitting methods with the new and other flux limiters and by TVD methods are 
presented and compared. The different types of variables on which the flux limiters are based are 
tested and the results are compared against each other. The variables consist of conservative, 
primitive and characteristic variables. 
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The second test problem is a two-dimensional problem of an oblique shock step with Mach 
numbers 3 and 10 and a shock angle of 59". It is probably the most severe test for any convective 
scheme. This is used for a comparison between SMART, SHARP and the third-order Van Leer 
flux-splitting method, all with characteristic-based flux limiters, and several TVD schemes. 
Oscillatory results with stability problems and the rate of convergence are also of interest. 
Nevertheless, the Mach number is much higher than for the other two test problems in this paper, 
which implies the existence of a strong shock. 

The third test problem is a two-dimensional problem of transonic inviscid flow past an 
NACA0012 aerofoil with Mach number 0.8 at zero angle of attack. This computation is performed 
to prove that the present scheme is applicable to generalized co-ordinates and flow in the 
transonic range. The capability of capturing the shock wave by the present method can be thus 
demonstrated. 

In order to shorten the length of the paper, the comparisons of the physical results by the flux 
limiters based on conservative and primitive variables are presented only for the one-dimensional 
shock tube problem. The physical results of other two test problems are illustrated with the flux 
limiter based on characteristic variables only. 

Shock tube problem 

The two-dimensional computational programme in this study can easily be simplified to a one- 
dimensional problem. The shock tube problem with the same initial conditions as in Reference 23 
is shown in Figure 2. Initially, a diaphragm at x = 0.5 (0 < x < 1) separates two regions which have 
different densities (pL = 1.0, pR = 0.125) and static pressures (pL = 1.0, p R  = 0.1) and the two regions 
are in a constant state and static (uL=uR=O). At time t >O the diaphragm is broken and the case 
before any wave has reached the left or right boundary is considered. In the present computations, 
Ax = 0-01 and At  = 002. 

Figures 3 and 4 indicate the computed velocities and internal energies at t = 0.14 (i.e. after 70 
time steps; denoted by symbols) by the SHARP, SMART, Van Leer and present algorithms 
employing the flux limiters based on conservative variables and their comparison with the exact 
solution (denoted by solid line). These figures show that the overshoots of the results obtained by 
SHARP are the largest of the four schemes, the next highest overshoot is shown by SMART, and 
then the present work and Van Leer's scheme. However, the results of SHARP and SMART 
exhibit higher shock resolution (the shock transition occupies three zones) than the results of the 

Region 1 Region 2 

x= 0 X= 0.5  x= 1 

Figure 2. Initial conditions for 1D shock tube problem (t =0) 
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Figure 3. Computed velocities of 1D shock tube problem at t =a14 by different methods (limiter based on conservative 
variables) 

present work and Van Leer’s limiter (four and five zones respectively). This means that the present 
method gives slightly better accuracy (one mesh point near x =0.75) than Van Leer’s third-order 
scheme. Figures 5 and 6 show the velocities and internal energies obtained by the same algorithms 
with the flux limiter expressions based on primitive variables. It is obvious that the oscillatory 
behaviour is largely reduced and better accuracy is achieved. Note that the results of Figures 5 
and 6 are obtained by the above-mentioned schemes with a primitive-based flux limiter; therefore 
the algorithms are not the same as those proposed in the original investigations. Figures 7 and 8 
indicate that further reduction of the oscillatory behaviour and the best accuracy of the computed 
results are obtained by the flux limiter based on characteristic variables. The results of additional 
computations of the shock tube problem performed by Harten’s second-order TVD scheme and 
Chakravarthy’s third-order MUSCL-type TVD scheme are shown in Figure 9. The results of the 
two TVD schemes have no overshoots and undershoots and the shock resolution of the third- 
order scheme designed by Chakravarthy is better (the shock transition occupies five zones) than 
that of Harten’s scheme (seven zones). Comparison of the results of Figures 8 and 9 indicates that 
the TVD schemes and the present scheme with a characteristic-based flux limiter give the same 
degree of successful prediction on internal energy but a very slight overshoot is still observed on 
velocity (x % 05) by the present scheme. The following conclusions can be drawn from these 
figures. (i) the characteristic-based flux limiter eliminates a large portion of the oscillatory 
behaviour and the associated algorithms can give results with better accuracy than that of the 
convention1 conservative-based and primitive-based flux limiters. (ii) Although the present 
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0 00 0 26 0 50 O 75 I 00 
X 

CONSERVATIVE -- SHARP 

0 00 0 2s 0 50 0 75 I 00 
X 

CONSERVATIVE -- SMART 

3.0 I 3.0 , 

IS 
0 00 0 25 0 50 0 75 1 0 0  

X 

CONSERVATIVE -~ PRESENT WORK 

O M )  0 25 0 50 0 75 100 
X 

CONSERVATIVE -- VAN LEER 

Figure 4. Computed internal energies of 1D shock tube problem at t=0.14 by different methods (limiter based on 
conservative variables) 

algorithm originates from the idea of the SHARP and SMART algorithms, the added property of 
continuous differentiability by a specially designed function improves not only the convergence 
rate but also the oscillation reduction. The accuracy of the results is close to or slightly better than 
that obtained by Van Leer's third-order scheme. (iii) The flux-splitting method with the proposed 
flux limiter based on characteristic variables can give the same good results as those of a 
secondlthird-order-accurate TVD scheme. On the basis of the above observations, the following 
two test problems are discussed mainly in the light of the flux-splitting method with a 
characteristic-based flux limiter. 

Oblique shock step prpblem 

The oblique shock step problem is a well-known test problem and the numerical results can be 
compared with exact solutions. The 24 x 24 grid system for the rectangular computational domain 
with a height: width ratio of 3 : 5 is uniformly distributed. The boundary conditions consist of: (a) a 
supersonic inflow at i=  l,j= 1, . . . , NJ, which allows the values Q1,, to be fixed at free-stream 
conditions; (b) a prescribed fixed value of Qi,l, i =  1, . . . , NI, which produces the desired shock 
strength and shock angle (59' in the present study); (c) a supersonic outflow at the rightmost 
surface (i = N I  = 24, j = 1, . . . , NJ) and the top surface (j = N J  = 24, i = 1, . . . , NI), i.e. a zero- 
order extrapolation boundary condition can be used within these two boundaries. 
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Figure 5. Computed velocities of 1D shock tube problem at t=014 by different methods (limiter based on primitive 
variables) 

Comparisons of the computational results by different characteristic-based ‘flux limiters’ of the 
SMART algorithm, the SHARP algorithm, the third-order Van Leer flux-splitting method, 
Harten’s second-order TVD scheme, Chakravarthy’s third-order MUSCL-type TVD scheme and 
the exact solution are made in terms of accuracy, oscillatory phenomena, stability and conver- 
gence rate. 

Accuracy of solution and oscillatory phenomena. Figure lO(a) compares the results of the 
different schemes with the exact solution for a Mach number of 3. It must be noted that all schemes 
employ flux limiters based on characteristic variables and are therefore different from those of the 
original works. It is found that the SHARP and SMART algorithms yield more accurate results 
near X I L  = 0.5 than the present scheme and Van Leer’s scheme and even the two TVD schemes. 
The results of the TVD schemes show the poorest agreement with the exact solution (i.e. two 
points fall off the exact solution). All solutions have no overshoot or undershoot phenomena. 
When the Mach number is increased from 3 to 10 (Figure lqb)), it is observed that the pressure 
results from the two TVD schemes and Van Leer’s scheme are less accurate in front of the shock 
and improve somewhat behind the shock in comparison with the results of the other schemes. 
Although the SHARP algorithm gives the most accurate results of all the schemes, the time step 
must be reduced from CFL = 5-0 to 1-5 to get convergence for Mach number 10. This implies that 
convergence is difficult to obtain with the SHARP algorithm. 
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Figure 6. Computed internal energies of 1D shock tube problem at t=0.14 by different methods (limiter based on 
primitive variables) 

The accuracy of the computational results can be measured by the relative error E in addition to 
the observed deviation from the exact solution in Figures 1 l(a) and 1 l(b). The relative error can be 
defined as 

n 

i=1 
1 p p a l c  -Pt""I 

1 p y  
E =  n 7 

i =  1 

where PYlc is the calculated pressure at node i and P f"""' is the exact solution for pressure at node i. 
Figure ll(a) shows the histories of relative error for Mach number 3. It is found that the lowest 

errors are obtained with the SHARP and SMART schemes with small oscillation. Careful 
inspection of the values at each computational node shows that the error only exists at points 
adjacent to the shock location for the present method, the TVD schemes and the Van Leer flux- 
splitting method (third-order) (Figure 1qa) and lqb)), i.e. the global relative errors are essentially 
induced by local errors of these points. Comparing the histories of relative error for Mach 
number 10 (Figure ll(b)) with those for Mach number 3, the accuracies of the computational 
results by the TVD schemes and Van Leer's method are close and the accuracy of the computed 
results by the present scheme is close to that by the SMART algorithm with the same CFL 
number. These figures indicate that the SHARP and SMART algorithms yield the best accuracy. 
The present proposed scheme gives results of a comparable degree of accuracy to the SHARP and 
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Figure 7. Computed velocities of 1D shock tube problem at t=@14 by different methods (limiter based on characteristic 
variables) 

SMART algorithms and with better agreement with the exact solution than the two TVD schemes 
and the Van Leer flux-splitting method. 

Convergence histories. The residual history is an important consideration when selecting a 
numerical method. Figure 12(a) shows the residual histories for Mach number 3 and CFL = 5.0. It 
indicates that the convergence rates for the present method, the two TVD schemes and Van Leer’s 
scheme are very close, but the residual value cannot be reduced to a level of less than if the 
SHARP algorithm or if the SMART algorithm is applied with a characteristic-based flux 
limiter. It is believed that the difficulty in convergence is associated with a discontinuous 
derivative of the limiter in certain regions and a steeper slope of of versus & near (2, N 0. Figure 
12(b) plots the residual histories for Mach number 10. It shows that the high frequency of large 
scattering residual from the SHARP algorithm and the small scattering residual of the SMART 
algorithm still exist (even for CFL = 1.5 for the calculation by the SHARP algorithm). The rate of 
convergence of the present method is somewhat slower than that of Harten’s TVD scheme but 
faster than the others. 

Figures 12(c) and 12(d) compare the residual histories for the present scheme when the flux 
limiter is based on characteristic, primitive and conservative variables for Mach numbers 3 and 10 
respectively. Figure 12(c) indicates that the reduction of residual value by the conservative-based 
and primitive-based flux limiters is slower than that by the characteristic-based flux limiter. Figure 
12(d) shows similar results or Mach number 10 but more obvious conclusions are obtained. 



300 H. LIN AND C.-C. CHIENG 

3.0 , I 3.0 
1 

1.5 1 1 I I 

0.00 0.25 0.50 0.75 1.00 
X 

CRARACTERISRC -- SHARP 

1 5  4 I I I 
0 00 0 25 0.50 0 75 1-00 

X 
CHARACTERISTIC -- SMART 

3.0 I 30 
I 

1.5 I 1 I I I 
0.00 0.25 0.50 075 1.W 

X 
CHARACTERISTIC -- PRESENT WORK 

1 5  I I 

O W  0.25 0 5 0  0 15 IW 
X 

CHARACTERISTIC -- VAN LEER 

Figure 8. Computed internal energies of 1D shock tube problem at t=0.14 by different methods ( l i i ter  based on 
characteristic variables) 

Figures 12(c) and 12(d) imply that the choice of a characteristic-based flux limiter also provides 
desirable convergence characteristics. 

In summary, for the oblique shock problem the proposed characteristic-based flux limiter of the 
present scheme provides results with slightly lower accuracy near the shock location but faster 
convergence rate than the flux limiters (Table I) of the SHARP and SMART algorithms. Also, the 
present method gives results of better accuracy than the Van Leer third-order scheme and the two 
TVD schemes of second/third-order accuracy, although they yield similar trends of convergence. 

Computational results of transonic flow 

A fully converged solution for the case of an NACA0012 aerofoil with M, = 0 8  at zero angle of 
attack is desired. A 96 x 32 half-C-type grid (Figure 13) is established by a hyperbolic grid solver 
for this problem. On the aerofoil surface the grid points are distributed with clustering at the nose, 
trailing edge and regions of shock so that the resolution of shock can be increased. The four 
boundary conditions are listed below: 

(a) symmetric condition for < = O  
(b) outflow condition (subsonic) for c = c,,, 
(c) inviscid wall condition (slip condition) for q = 0 
(d) subsonic far-field condition for q = qmax. 
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Figure 9. Computed velocities and internal energies of 1D shock tube problem at t=0.14 by TVD schemes 

A space-varying time step is used to accelerate convergence. The computed surface pressure 
coefficients (C,) along the aerofoil are compared with the calculated results of P ~ l l i a m ~ ~  in 
Figure 14. The computed values by the present method agree with Pulliam’s data almost 
everywhere, except that Pulliam’s results exhibit apparent ‘undershoot’ behind the shock while the 
present method achieves a non-oscillatory shock solution. 

CONCLUSIONS 

A characteristic-based flux limiter has been successfully developed to approximate the convective 
term at the cell interface in a third-order-accurate scheme. The oscillatory behaviour of the results 
is greatly reduced in comparison to a conservative-based or primitive-based flux limiter for all 
three test problems. The accuracy of the computed results by the present method is superior to 
that of a secondrhird-order TVD scheme and the Van Leer flux-splitting method with a smooth 
limiter; moreover, the accuracy of the results is comparable to that obtained by direct extension of 
the SMART or SHARP algorithm with characteristic-based flux limiters and to that from a third- 
order MUSCL-type TVD scheme. As applied to the oblique shock step problem with high Mach 
number, the present method provides the least amount of oscillation with a rapidly decreasing 
residual history and large CFL numbers. For transonic inviscid flow past an NACA0012 aerofoil, 
the present scheme can obtain a fully converged solution for Mach number 0.8 at zero angle of 
attack without an ‘undershoot’ pressure coefficient. Overall evaluations of the present method 
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Figure 12 Residual histories of oblique shock step problem by Merent methods (a)characterktic-basd, Mach 
number 3; (b) characteristic-based, Mach number 10 
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Figure 12. Residual histories of oblique shock step problem by present scheme (comparison between characteristic-based, 
primitive-based and conservative-based) (c) Mach number 3; (d) Mach number 10 

prove that it provides non-oscillatory, accurate, fast-convergent results over a wide range of flow 
speed for the flux-splitting method. 

APPENDIX. NOMENCLATURE 

a speed of sound 
E, 
F,  G 
$, 6, Q 
J Jacobian of transformation 

total energy per unit volume 
fluxes of mass, momentum and energy 
flux vector of transformed Euler equations 
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Figure 13. Computational grid of NACAOO12 aerofoil for transonic inviscid flow problem 
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Figure 14. Computed surface pressure coefficients C, of NACA0012 aerofoil by present scheme with Mach number 0.8 at 
zero angle of attack 

direction cosines of interface in (- and q-directions 
Mach number 
pressurelp a 
model matrix 
slope value for present scheme 
slope value for present scheme 
time 
Cartesian velocity components normalized by free-stream sound speed 
contravariant velocity components normalized by free-stream sound speed 
physical Cartesian co-ordinates 
small value used for Van Leer's smooth limiter 
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small value used for present scheme 
ratio of specific heats 
first derivative in 5-direction 
first derivative in ?-direction 
forward difference operator 
backward difference operator 
Van Leer limiter parameter; K=* for third-order limiter 
scalar transport variable 
normalized transport variable 
transformed co-ordinates in streamwise and normal directions 
density normalized by free-stream density 
time increment 
average error for test problem 

Superscripts 

+, - 
n time level 
i“, normalized variable 

positive and negative flux contributions; also forward and backward spatial differ- 
encing or extrapolation 

Subscripts 

00 free-stream condition 
5 streamwise direction 
? normal direction 
U upstream 
D downstream 
C centre 
f cell interface 
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